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Abstract: This paper describes advanced cell-level 
monitoring and control algorithms and their application 
for battery power management. The battery power 
management system developed by APRI has the capability 
to estimate cell state of charge (SoC) and internal 
resistance indicative of state of health (SoH); and to 
control the SoC of each individual cell in high-voltage, 
high power battery packs. The designed battery power 
management system has been tested on a 24-cell lithium-
ion battery pack using hardware designed and 
manufactured by APRI. Test results show that the cell-level 
estimator can accurately estimate the evolution of cell SoC 
and can effectively capture the variation of battery internal 
resistance due to the aging effect to indicate battery SoH; 
and feedback control can significantly reduce pack 
imbalance and increase the effective pack capacity.  

Keywords: Cell-Level Control; Monitoring; SoC; SoH; 
Lithium Ion. 

Introduction 
This research is motivated by the recognized need for 
monitoring and controlling battery function at the cell level. 
Today's high power semiconductor technology permits 
high battery voltages. These voltages require series strings 
of many cells depending on the electrochemical couple 
selected. Repeated discharges of these long series strings of 
cells, especially deep discharges, may cause a battery to 
become unbalanced, which will lead to accelerated 
degradation and eventually premature failure [1]. Because 
of the cell to cell variability in performance and the 
interactions between cells described above, it is desirable to 
monitor the performance of a battery energy storage system 
on a cell by cell basis. The ability to do so can be used to 
prolong battery life as well as reliability and safety. 
In this work, we aim at the development of a systematic 
framework for the design of a power management system 
that integrates real-time current/voltage measurements, 
cell-level mathematical models, and feedback control 
algorithms to regulate the SoC of individual cell in a high-
voltage, high-power battery pack in real time. One of the 
main obstacles for real-time feedback control is the 
difficulty to obtain real-time measurements of cell SoC 
without interrupting normal battery operations. We design 
and experimentally implement a model-based battery SoC 
and SoH estimator using the extended Kalman filtering 
technique [2,3]. The real-time SoC and SoH estimator 

enables the design of a feedback controller to regulate the 
SoC of each individual cell in a high-voltage, high-power 
battery pack. The control problem is formulated as the one 
that regulating the SoC of each individual cells in a 
multiple-cell battery pack by manipulating the shunt 
current through the shunt resistor associated to each cell. A 
control system is designed that couples the cell estimator to 
a model-based controller so that the SoC estimates obtained 
from the cell SoC and SoH estimator are used by the 
controller to determine the appropriate amount of shunt 
current to reduce the battery imbalance. Finally, a battery 
test is carried out to implement the designed energy 
management system to a 24-cell Lithium-Ion battery pack 
for demonstration. Significant reduction of pack imbalance 
and increase of effective pack capacity are observed in the 
test.  

Cell-Level SoC and SoH Estimator Design 
For cell performance monitoring, cell SoC and SoH are two 
most important variables that indicate the condition of a 
cell. SoC measures the ratio of how much charge is left in 
the cell to the cell total capacity and SoH is used to indicate 
how well the cell is functioning relative to its nominal 
states, which is often represented by cell resistance and 
capacity [4]. Having access to SoC and SoH of each 
individual cells in real-time is essential for per-cell 
monitoring and control.  
In this section, we design a cell-level SoC and SoH 
estimator using a cell-level model and an advanced 
nonlinear state and parameter estimation algorithm. An 
equivalent-circuit cell-level model is used as a basis for the 
estimator design and the extended Kalman filter (EKF) [5], 
a nonlinear extension of the Kalman filter, is adopted as the 
estimation algorithm. 

A Cell-Level Model 
We consider a cell-level model taking the following 
discrete-time form: 

 

 
 

(1) 

where z is the SoC, α is the time constant, R1, and R2 are 
resistors, i2 is the current through R2, I is the overall 
charging/discharging current, Cn is the capacitance, η is the 
cell coulombic efficiency, ω1 and ω2 are unmeasured 
process noises, νk is measurement noise and yk is the cell 



 

terminal voltage measurement. The OCV(z) is the 
correlation between the cell open-circuit-voltage and the 
cell SoC, which can be obtained from the battery 
manufacturer. R1 represents the lumped series resistances 
for the solid and liquid phases and R2 represents the lumped 
interfacial resistances. The equivalent circuit used to derive 
the model can be found in [6].  

The Extended Kalman Filter 
The extended Kalman filter is a predictor-corrector type 
estimation algorithm to estimate the parameters and states 
of a nonlinear system. We consider the general form of the 
mathematical model of a nonlinear system as follows:  

 

 
 

(2) 

where k is the time index, xk is the model state vector,  ik is 
the process input, θk is the model parameters vector, yk is 
the process output, ωk is unmeasured process noise and νk is 
measurement noise. Nonlinear functions f and h are the 
state transition function and the output function, 
respectively.  
The operation of the extended Kalman filter includes two 
steps: linearization and standard Kalman filter. In the 
linearization step, at each time index, k, nonlinear 
functions, f(xk, θk, ik) and h(xk, θk, ik) are linearized by their 
first-order Taylor expansions. Based on the linearized 
system, the standard Kalman filter can be directly applied 
to estimate θk and xk based on the nonlinear process model 
of (2). When the cell SoC is one of the states of the model 
and the cell internal resistance indicative to battery SoH is 
one of the parameters of the model, EKF can be used to 
estimate the SoC and SoH at cell-level in real-time. The 
details of the operation of an EKF are omitted in this paper 
due to space limitation. The readers may refer to [5] for 
mathematical description of the EKF for general nonlinear 
systems.  

Feedback control design 
The control objective is to balance the SoC of different 
cells in a battery pack. A charge bleed circuit is used to 
balance the state of charge of different cells in the battery 
pack. With charge bleed, power is selectively bled off of 
the stronger cells using a bypass resistor. Electronics on 
each cell's control board switch the bleed resistor into and 
out of contact with the cell, determining whether or not 
current is being drained from that cell. The time fraction 
that the bleed resistor is switched into the circuit is the 
bleed fraction. The effective bleed current is defined as the 
product of bleed fraction and the bleed current when the 
bleed resistor is switched into the cell. We formulate our 
control problem as the one that balancing the state of 
charge of different cells in the battery pack by manipulating 
the effective bleed current of each cell. 

A feedback control algorithm is designed to compute the 
effective bleeding current as follows: 

 
(3) 

where Ibleed,i(k) is the effective bleed current for cell i at 
time index k, )(ˆ kzb is the estimated SoC of cell b, the 

weakest cell in the pack, )(ˆ kzi  is the SoC of cell i, and β 
is the controller gain, which governs the rate of 
convergence of the system under control and is designed 
based on the cell-levle model.  
The estimated SoC for both cell b and cell i required by the 
feedback control algorithm of (3) are provided by the 
designed cell estimator. The controller of (3) is, therefore, 
coupled with the cell SoC and SoH estimator to form an 
estimator/controller structure to control the SoC of the 
battery pack at individual cell level. The 
estimator/controller structure is shown in Figure 1. 

 
Figure 1. The estimator/controller structure 

The structure shown in Figure 1 is very effective for the 
control of many complex processes where the quantities of 
the controlled variables cannot be directly measured in real-
time and estimation techniques are required to acquire these 
quantities.  

Test results 
APRI built a battery pack around twenty-four GP18650 
Lithium-ion cells, as shown in Figure 3, to test the 
developed cell-level monitoring and control algorithms. 
The cells are connected in 3 strings in parallel and each 
string contains 8 cells in series, giving us an overall voltage 
of more than 30V. In the test, current and voltage 
measurements are obtained by using an Agilent 34970A 
data acquisition unit. An Agilent 6653A DC power supply 
is used to charge the battery and an Agilent 6060B DC 
electronic load is used for discharging the battery. Repeated 
cycles of charge/discharge are used. Each cycle follows the 
constant current discharging, constant current charging and 
constant voltage charging pattern. 
We first calibrate the cell-level model of (2) using a 
GP1865L200 Lithium Ion cell. OCV(z) function is obtained 
by interpolating test data from the manufacture using the 
cubic spline interpolation technique. The model calibration 



 

result is presented in Figure 2. The top plot shows the 
comparison of the cell terminal voltage profile predicted by 
the cell model of (1) (solid line) and that obtained from 
measurement (dotted line). The error of the two profiles is 
plotted in the bottom. It can be observed that the model 
error is very small in most of the time during the test. The 
high fidelity of the model makes it a good basis for model 
based monitoring and control system design.   
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Figure 2: Result of Model Calibration 

We tested the cell SoC and SoH estimator using cell 
current and terminal voltage data collected in a 35-day test. 
The test results obtained during the first day is presented in 
Figure 4. In the top plot of Figure 4, the solid line shows the 
estimated cell state of charge, and the dotted line shows the 
cell state of charge computed by using ampere hour 
counting, which is considered to be 'true' SoC of the cell. 
The bottom plot of Fig. shows the error between the SoC 
estimates and that obtained from ampere hour counting. It 
can be seen that the two profiles are very close and the 
estimation error is about 5%. Throughout the 35-day of the 
test, the high accuracy of the SoC estimate is maintained. 
The evolution of the cell internal resistance obtained by the 
SoC and SoH estimator during the 35-day test is shown in 
Figure 5. The resistance gradually increases from about 
80mΩ to about 120mΩ due to the aging during the repeated 
cycling.  
 

 
Figure 3. The 24-Cell Battery Pack with Controller 

Board  

We tested the feedback control system to demonstrate the 
capability of the control system to effectively reduce pack 

level imbalance and increase of effective pack capacity. To 
do this, the 24-cell battery pack was initially unbalanced. 
Specifically, cells no. 6, 7, and 8 are much stronger than the 
rest of the cells in the pack. The initial values of SoC of 
these strong cells are about 20% higher. The test lasted for 
10 cycles and the test results are presented in Figure 6 to 
Figure 10. 

 
Figure 4: Test results of the SoC and SoH estimator 

 
Figure 5: Evolution of the Internal Resistance from the 

SoC and SoH Estimator 

Figure 6 shows the evolution of terminal voltage of each 
individual cell in the 24-cell battery pack under control. 
During the first cycle, two very different terminal voltage 
profiles are observed, one is high and one is low. The high 
voltage profile representing evolution of terminal voltages 
in the three strong cells (cells 6, 7, and 8) and the low 
voltage profile representing the evolution of terminal 
voltages in the rest of cells in the pack. It is seen that after 3 
cycles, the difference between the two profiles is not as 
apparent as it is during the first cycle, which is a sign of 
improved balance of the battery pack due to the 
implementation of the controller. In Figure 7, the evolution 
of the estimated SoC of each cell in the battery pack is 
presented. Again, it is clear that after three cycles, the 
profiles of SoC of all cells in the pack are very close to 
each other. 
To demonstrate the improved balance of the cells in the 
battery pack, a plot of the difference between the highest 
and lowest terminal voltages in the pack at the end of each 
constant voltage charge mode (when the pack is fully 
charged) is shown in Figure 8. This difference is about 0.19 
V at the beginning of the test and is reduced to about 0.03V 
at the end of the test. Furthermore, starting at the 4th cycle, 
this difference is stabilized within 0.04V. In terms of the 



 

SoC, the SoC difference between the strongest and weakest 
cells at the end of each cycle is plotted in Figure 9. Initially, 
there is a difference of 18% SoC between the strongest and 
the weakest cells in the pack, and this difference is reduced 
to around 3% by the designed controller. In summary, the 
designed estimator/controller structure successfully 
balances the SoC of battery cells in a 24-cell battery pack 
within 4 charge/discharge cycles.  
There are many benefits of individual cell-level control to 
high-voltage, high-power batteries. Implementing the 
designed controller to the battery pack can significantly 
increase the useful capacity of the pack because the 
controller can significantly reduce the imbalance of a 
battery pack. Figure 10 shows the increase of discharge 
capacity of the battery pack. The discharge capacity is 
computed by counting the current flowing out of the battery 
pack from the fully charged state to the fully discharged 
state at constant discharge current of 2.4A. It can be 
observed that in the first cycle, due to the imbalance of the 
pack, only 34Ah can be discharged from the battery pack 
from its fully charged state to its fully discharged state. 
This capacity increases as the controller is working to 
balance the pack. In the second cycle, this capacity 
increases to above 38Ah. After 4 cycles, the discharge 
capacity of the pack is approximately 44Ah and stable at 
this value.  
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Figure 6: Profiles of the Terminal Voltage for the 24 

Cells under Control  
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Figure 7: Profiles of the SoC of 24 Cells under Control  
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Figure 8: Difference of the Terminal Voltage at the 

End of Each Cycle  
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Figure 9: SoC Imbalance at the End of Each Cycle 
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Figure 10: Increase of the Discharge Capacity of the 

Battery Pack Due to the Feedback Control 
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